
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.510111 561

A Survey: Compiler and Simulators used for

Optimization of Code for Multiprocessors

H T Prakash
1
, Dr. M Srinivas

2
, Chetan R

3

Research Scholar, Dravidian University, Kuppam, Andhra Pradesh, India 1

Research Guide, Dravidian University, Kuppam, Andhra Pradesh, India 2

Assistant Professor, SJBIT, Bengaluru, Karnataka, India 3

Abstract: Optimization is a program transformation technique, which tries to improve the code by making it consume

fewer resources (i.e. CPU, Memory) and deliver high speed. Another important topic is high performance computing,

which is used for parallel programming to make the execution of the programs faster and increase the performance of

the system. This paper describes the various compilers and simulation tools that can be used for optimization of code in

multiprocessor systems.

Keywords: Optimization, high performance computing, parallel programming.

I. INTRODUCTION

Embedded systems are becoming more and more

important. The products containing embedded systems

span from day-to-day household and consumer products,

such as digital TVs, mobile phones, and automobiles, to

industrial devices and equipment, including, for example,

robots, aviation equipment, and high end military and

scientific devices such as aircraft.

Previously, because embedded systems were highly

limited in computational capability, memory size, and

power consumption, much research was dedicated to

making the best use of limited system resources.

Multi-core devices, which incorporate two or more

processors on the same integrated circuits, are becoming
increasingly relevant to the design and implementation of

embedded systems. In multi-core platforms, carefully

managing communication and synchronization among

different cores is important to achieve efficient

implementations. Two or more processing cores sharing

the same system bus and memory bandwidth limit the

achievable performance improvements. The ability of

multi-core processors to increase application performance

depends on the use of multiple concurrent tasks within

applications. Therefore, if code is written in a form that

facilitates decomposition into concurrent tasks, the multi-
core technologies can be exploited more effectively.

Dataflow-based languages are suitable for such

decomposition into concurrent tasks, particularly in the

broad domain of digital signal processing (DSP)

applications.

Dataflow representations of DSP software have been

explored actively since the 1980s. Such representations

have proved to be useful in identifying bottlenecks in DSP

algorithms, improving the efficiency of the computations,

and designing appropriate hardware for implementing the

algorithms.

Dataflow descriptions have been used in a wide range of

DSP application areas, such as multimedia processing, and

wireless communications. Among various forms of

dataflow modeling, synchronous dataflow (SDF) is geared

towards static scheduling of computational modules,

which improves system performance and predictability.

However, many DSP applications do not fully conform to

the restrictions of SDF modeling. More general dataflow

models, such as CAL, have been developed to describe
dynamically-structured DSP applications. Such

generalized models can express dynamically changing

functionality, but lose the powerful static scheduling

capabilities provided by SDF.

The next section is going to give details about the

simulators and the compilers that can be used for

optimization of code.

II. RELATED WORK

A. Open Research Compiler (ORC):

This is the outcome of ORC[1] project initiated by Intel
Microprocessor Research Labs (MRL). To provide a

leading open source IPF (IA-64) compiler infrastructure to

the compiler and architecture research community.

 To encourage compiler and architecture research.

 To minimize the resource investments for university

groups.

 Performance better than existing IPF open source

compilers.

 Fair comparison on a common infrastructure.

C/C++ and Fortran compilers targeting IPF are present in
the ORC. This can be used for Interprocedural analysis,

Loopnest optimization, Code generation. This can be used

in the Linux platform. The figure 1 shows the flow of

ORC.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.510111 562

Fig 1: Flow of ORC Compiler

The ORC uses the region based compilation technique.

B. The Collective:

In the Collective system architecture, virtual appliances,

and their updated versions, are deposited in repositories.

Individual computers run a universal appliance receiver

that retrieves the latest copies of virtual machines from

repositories upon request. In other words, the computers

operate as a cache of appliances. The system uses a

number of optimizations to minimize the cost of the

storage and transfer of appliances. This approach allows a

small number of professional staff to create fully tested,

integrated environments that are made available quickly to
all users anywhere on the network. Efficient migration of

appliances. X86 appliances, complete with operating

systems, application programs, and possibly user data, can

be very large. We found that the storage and transfer of

appliances can be effectively optimized using the

techniques of caching, demand paging, memory

ballooning to reduce the memory state, and copy-on-write

disks to capture changes. The time to transfer an appliance

on a DSL link (384 kbps) is typically less than 20 minutes.

 Virtual appliance networks. Generalizing the concept
of virtual appliances to include a virtual network

enables the encapsulation of network management

knowledge and sets of related services.

 The CVL (Collective Virtual appliance

Language). A language for describing composition of

virtual appliances to create virtual networks of

appliances; the language uses the concept of

inheritance to allow appliances be individually

configured and customized appliances while retaining

the ability to be upgraded automatically.

 Livewire: An intrusion detection system for virtual

machines. Used to build an intrusion detection system

(IDS) that is both difficult to evade and difficult to

attack. Like a host-based IDS, it has excellect visibility

since it can access all the states of the computer being
watched. Like a network-based IDS, it is not

vulnerable to being disabled by the attacker.

 Terra: A virtual machine-based platform for

trusted computing. Terra allows applications to run in

an "open box" VM with the semantics of a modern

open platform, or in a "closed box" VM with those of

dedicated, tamper-resistant hardware. It has attestation

primitives to cryptographically identify the contents of

closed-box VMs to remote parties and showed how to

implement them efficiently.

 Remote timing attacks. It demonstrated the first
remote timing attack where a private key can be

extracted from a web server. Patches to eliminate such

vulnerability were developed and applied to the Open

SSL library.

 CRED: a dynamic buffer overrun detector. CRED

(C Range Error Detector) that finds all buffer overrun

attacks as it directly checks for the bounds of memory

accesses. Unlike the original referent-object based

bounds-checking technique, CRED does not break

existing code because it uses a novel solution to

support program manipulation of out-of-bounds
addresses. CRED is implemented as an extension of

the GNU C compiler version 3.3.1, and has been tested

on over 20 open-source programs, comprising over 1.2

million lines of C code.

C. Multifacet Gems:

The heart of GEMS is the Ruby memory system simulator.

As illustrated in Figure 2, Leverages the power

of Virtutech Simics to simulate a Sparc multiprocessor

system. This enables the simulation of commercial

software such as database systems running on the Solaris
operating system. By off-loading the correctness

requirement to Simics, our "timing-first" simulation can

focus on accurate performance modeling rather than

correctness details.

 The GEMS Opal module provides a detailed, out-of-

order processor model. Opal is flexible and highly

configurable to model different branch predictors,

issue-widths, execution resources, and etc.

 The GEMS Ruby module provides a detailed memory

system simulator. It can simulate a wide variety of
memory hierarchies and systems ranging from

broadcast-based SMP to a hierarchical directory-based

Multiple-CMP system.

 The GEMS SLICC (Specification Language including

Cache Coherence) language simplifies and speeds the

development of differing memory hierarchies and

cache coherence protocols. Systems are specified in a

table-driven language which abstracts away much of

the manual labor involved with C/C++ coding.

http://www.virtutech.com/products/simics.html

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.510111 563

Figure2: Gems Architecture

D. ML-RSIMML-RSIM:

It is an execution-driven computer system simulator that

combines detailed models of modern computer hardware,

including the I/O subsystem, with a fully-functional

operating system kernel. These features make the

simulation environment particular attractive for studies
involving applications with significant I/O or operating

system activity. ML-RSIM executes static SPARC V8

binaries. The Lamix system call interface is compatible

with Solaris 2.8. In general, applications compiled for ML-

RSIM can execute on native Sparc/Solaris systems without

modification. No special libraries or include files are

required to compile applications for the simulator.

Features

The simulator includes models of the following hardware

components:

 dynamically scheduled SPARC V8 compatible

processor

 Level-1 instruction and data cache and a unified level-2

cache

 Split-transaction coherent system bus

 Multi-bank memory controller with SDRAM or

RAMBUS memory

 Real-time clock

 SCSI controller (based on Adaptec AIC7770) with

SCSI bus

 SCSI hard disk with cache, prefetching and optional

write buffering

E. Dinero IV Trace-Driven Uniprocessor Cache Simulator:

Dinero IV is a cache simulator for memory reference
traces. It includes the following major changes

over Dinero III.

 subroutine-callable interface in addition to trace-

reading program

 simulation of multi-level caches

 simulation of dissimilar I and D caches

 better performance, especially for highly associative

caches

 classification of compulsory, capacity, and conflict

misses

 support for multiple input formats

 cleaned up and modernized code, improved portability

Some deep-seated limitations:

 Dinero IV is not a timing simulator. There is no notion

of simulated time or cycles, only references.

 Dinero IV is not a functional simulator. Data &

instructions do not move in and out of the caches; in

fact they don't exist! The primary result of simulation

with Dinero IV is hit and miss information.

 Dinero IV isn't multi-threaded. If you have a
multiprocessor with enough memory, you can run

multiple independent simulations concurrently.

The basic idea is to simulate a memory hierarchy

consisting of various caches connected as one or more

trees, with reference sources (the processors) at the leaves

and a memory at each root. The various parameters of

each cache can be set separately (architecture, policy,

statistics). During initialization, the configuration to be

simulated is built up, one cache at a time, starting with

each memory as a special case. After initialization, each
reference is fed to the appropriate top-level cache by a

single simple function call. Lower levels of the hierarchy

are handled automatically.

F. HASE & SimJava:

HASE and SimJava are systems developed at the

University of Edinburgh to support, through simulation,

the visualisation of activities taking place inside computers

as they execute programs.

HASE is a Hierarchical computer Architecture design and

Simulation Environment which allows for the rapid
development and exploration of computer architectures at

multiple levels of abstraction, encompassing both

hardware and software. HASE produces a simulation trace

file which can be used to animate the on-screen display of

the model so as to show data movements, parameter value

updates, state changes, etc.

HASE is available free of charge to academic institutions,

and to other organisations that wish to use it for internal,

non-commercial, non-profit educational and/or research

purposes. Commercial licences can be negotiated. HASE-
III is a Java version of HASE that runs on Linux,

Windows and MAC OSX. The most recent version (3.7),

released in July 2016, can be downloaded from Download

HASE-III.

Several Computer Architecture Simulation Models for use

with HASE-III, appropriate for use as lecture

demonstrations or for practical exercises, are also

available for download as tar or zip files.

http://www.cs.wisc.edu/~larus/warts.html

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.510111 564

SimJava is a process based discrete event simulation

package for Java based on Hase++ (the behavioural

description language used in HASE), with animation

facilities. SimJava has become successful in its own right

but from a HASE perspective it offers an alternative way
of creating models, rather than a way of presenting

existing HASE models over the WWW.

III. CONCLUSION

This paper is going to give the details of the various

simulators their features and limitations. There are more

tools that can be used. Among these some tools work on

UNIX environment and some work on Windows

environment. Depending upon the user requirement they

can used these simulators for analyzing their codes and
evaluating the performance of the code.

REFERENCES

[1] http://ipf-orc.sourceforge.net/ORC-documentation.htm

[2] http://suif.stanford.edu/collective/

[3] http://research.cs.wisc.edu/gems/

[4] http://www.cs.utah.edu/~lambert/mlrsim/description.php

[5] http://www.cs.wisc.edu/~markhill/DineroIV

[6] http://www.icsa.inf.ed.ac.uk/research/groups/hase/

http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava

